
Selected Solutions for Chapter 11:
Hash Tables

Solution to Exercise 11.2-1

For each pair of keysk; l , wherek ¤ l , define the indicator random variable
Xkl D I fh.k/ D h.l/g. Since we assume simple uniform hashing, PrfXkl D 1g D

Prfh.k/ D h.l/g D 1=m, and so EŒXkl � D 1=m.

Now define the random variableY to be the total number of collisions, so that
Y D

P

k¤l
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Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

� A free slot is in the free list, a doubly linked list of all freeslots in the table.
The slot thus contains two pointers.

� A used slot contains an element and a pointer (possiblyNIL ) to the next element
that hashes to this slot. (Of course, that pointer points to another slot in the
table.)
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Operations

� Insertion:

� If the element hashes to a free slot, just remove the slot fromthe free list and
store the element there (with aNIL pointer). The free list must be doubly
linked in order for this deletion to run inO.1/ time.

� If the element hashes to a used slotj , check whether the elementx already
there “belongs” there (its key also hashes to slotj ).

� If so, add the new element to the chain of elements in this slot. To do
so, allocate a free slot (e.g., take the head of the free list)for the new
element and put this new slot at the head of the list pointed toby the
hashed-to slot (j ).

� If not, E is part of another slot’s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slot’s (j ’s) contents (ele-
mentx and pointer) to the new slot, and updating the pointer in the slot
that pointed toj to point to the new slot. Then insert the new element in
the now-empty slot as usual.
To update the pointer toj , it is necessary to find it by searching the chain
of elements starting in the slotx hashes to.

� Deletion: Let j be the slot the elementx to be deleted hashes to.

� If x is the only element inj (j doesn’t point to any other entries), just free
the slot, returning it to the head of the free list.

� If x is in j but there’s a pointer to a chain of other elements, move the first
pointed-to entry to slotj and free the slot it was in.

� If x is found by following a pointer fromj , just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed tox to point tox’s successor).

� Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expectedO.1/ times for the same reason they do with
the version in the book: The expected time to search the chains is O.1 C ˛/

regardless of where the chains are stored, and the fact that all the elements are
stored in the table means that˛ � 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from the free list would not
run inO.1/ time.

Solution to Problem 11-2

a. A particular key is hashed to a particular slot with probability 1=n. Suppose
we select a specific set ofk keys. The probability that thesek keys are inserted
into the slot in question and that all other keys are insertedelsewhere is
�
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�n�k

:
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Since there are
�
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�

ways to choose ourk keys, we get
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b. For i D 1; 2; : : : ; n, let Xi be a random variable denoting the number of keys
that hash to sloti , and letAi be the event thatXi D k, i.e., that exactlyk keys
hash to sloti . From part (a), we have PrfAg D Qk . Then,

Pk D PrfM D kg

D Pr
n�

max
1�i�n

Xi

�

D k
o

D Prfthere existsi such thatXi D k and thatXi � k for i D 1; 2; : : : ; ng

� Prfthere existsi such thatXi D kg

D PrfA1 [ A2 [ � � � [ Ang

� PrfA1g C PrfA2g C � � � C PrfAng (by inequality (C.19))

D nQk :

c. We start by showing two facts. First,1 � 1=n < 1, which implies
.1 � 1=n/n�k < 1. Second,nŠ=.n�k/Š D n�.n�1/�.n�2/ � � � .n�kC1/ < nk .
Using these facts, along with the simplificationkŠ > .k=e/k of equation (3.18),
we have

Qk D
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<
1
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(nŠ=.n � k/Š < nk)

<
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kk
(kŠ > .k=e/k) .

d. Notice that whenn D 2, lg lg n D 0, so to be precise, we need to assume that
n � 3.

In part (c), we showed thatQk < ek=kk for anyk; in particular, this inequality
holds fork0. Thus, it suffices to show thatek0=k0

k0 < 1=n3 or, equivalently,
thatn3 < k0

k0=ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0.lg k0 � lg e/

D
c lg n

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/ :

Dividing both sides by lgn gives the condition

3 <
c

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/

D c

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:



11-4 Selected Solutions for Chapter 11: Hash Tables

Let x be the last expression in parentheses:

x D

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:

We need to show that there exists a constantc > 1 such that3 < cx.

Noting that limn!1 x D 1, we see that there existsn0 such thatx � 1=2 for all
n � n0. Thus, any constantc > 6 works forn � n0.

We handle smaller values ofn—in particular,3 � n < n0—as follows. Since
n is constrained to be an integer, there are a finite number ofn in the range
3 � n < n0. We can evaluate the expressionx for each such value ofn and
determine a value ofc for which3 < cx for all values ofn. The final value ofc
that we use is the larger of

� 6, which works for alln � n0, and
� max3�n<n0

fc W 3 < cxg, i.e., the largest value ofc that we chose for the
range3 � n < n0.

Thus, we have shown thatQk0
< 1=n3, as desired.

To see thatPk < 1=n2 for k � k0, we observe that by part (b),Pk � nQk

for all k. Choosingk D k0 givesPk0
� nQk0

< n � .1=n3/ D 1=n2. For
k > k0, we will show that we can pick the constantc such thatQk < 1=n3 for
all k � k0, and thus conclude thatPk < 1=n2 for all k � k0.

To pickc as required, we letc be large enough thatk0 > 3 > e. Thene=k < 1

for all k � k0, and soek=kk decreases ask increases. Thus,

Qk < ek=kk

� ek0=kk0

< 1=n3

for k � k0.

e. The expectation ofM is

E ŒM � D

n
X

kD0

k � PrfM D kg
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X

kD0
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kD0
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n
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n � PrfM D kg

� k0

k0
X

kD0

PrfM D kg C n

n
X

kDk0C1

PrfM D kg

D k0 � PrfM � k0g C n � PrfM > k0g ;

which is what we needed to show, sincek0 D c lg n= lg lg n.

To show that EŒM � D O.lg n= lg lg n/, note that PrfM � k0g � 1 and
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PrfM > k0g D

n
X

kDk0C1

PrfM D kg

D

n
X

kDk0C1

Pk

<

n
X

kDk0C1

1=n2 (by part (d))

< n � .1=n2/

D 1=n :

We conclude that

E ŒM� � k0 � 1 C n � .1=n/

D k0 C 1

D O.lg n= lg lg n/ :


