Selected Solutionsfor Chapter 11
Hash Tables

Solution to Exercise 11.2-1

For each pair of key%, !, wherek # [, define the indicator random variable
X = 1{h(k) = h(l)}. Since we assume simple uniform hashingt By, = 1} =
Pr{h(k) = h(l)} = 1/m, and so BXy,] = 1/m.

Now define the random variablg to be the total number of collisions, so that
Y =} ;. Xu. The expected number of collisions is

E[Y] = E[ZXH}
k+#l

= > E[Xu] (linearity of expectation)
k#l

B n\1
— \2)m
nn—1)

2
nn—1)

2m

S~

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

* A free slot is in the free list, a doubly linked list of all fresbots in the table.
The slot thus contains two pointers.

* Aused slot contains an element and a pointer (possitilyto the next element
that hashes to this slot. (Of course, that pointer pointsntutteer slot in the
table.)

11-2 Sdlected Solutions for Chapter 11: Hash Tables

Operations

* |nsertion:

* Ifthe element hashes to a free slot, just remove the slot thenfree list and
store the element there (withnaL pointer). The free list must be doubly
linked in order for this deletion to run i®(1) time.

» If the element hashes to a used siotheck whether the elementalready
there “belongs” there (its key also hashes to glot

* If so, add the new element to the chain of elements in this Slotdo
so, allocate a free slot (e.g., take the head of the freeftistthe new
element and put this new slot at the head of the list pointeoytthe
hashed-to slot).

* If not, E is part of another slot’s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slotgs) contents (ele-
mentx and pointer) to the new slot, and updating the pointer in kbie s
that pointed tgj to point to the new slot. Then insert the new elementin
the now-empty slot as usual.

To update the pointer tp, it is necessary to find it by searching the chain
of elements starting in the slathashes to.

* Deletion: Let j be the slot the elementto be deleted hashes to.

» If x is the only element iy (j doesn't point to any other entries), just free
the slot, returning it to the head of the free list.

* If x isin j but there’s a pointer to a chain of other elements, move the fir
pointed-to entry to sloj and free the slot it was in.

* If x is found by following a pointer frony, just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed:ttw point tox’s successor).

* Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expecta@(1) times for the same reason they do with
the version in the book: The expected time to search the shsi@ (1 + «)
regardless of where the chains are stored, and the factlthla¢ 2lements are
stored in the table means that< 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from firee list would not
run in O(1) time.

Solution to Problem 11-2

a. A particular key is hashed to a particular slot with probiapil /n. Suppose
we select a specific set #fkeys. The probability that thedekeys are inserted
into the slot in question and that all other keys are insesteelwhere is

() (-3

Sdlected Solutions for Chapter 11: Hash Tables 11-3

Since there ar@’c) ways to choose our keys, we get

1 k 1 n—k n
=|- 1—-— .
o= (3) (-3) ()
b. Fori = 1,2,...,n, let X; be a random variable denoting the number of keys

that hash to slat, and let4; be the event thak; = k, i.e., that exactly keys
hash to sloi. From part (a), we have PA} = Q. Then,

Py = Pr{iM =k}
= Pr{(maxXi) =k>

1<i<n

Pr{there exist$ such thatX; = k and thatX; < kfori =1,2,...,n}

Pr{there exists such thatX; = k}

Pr{A, U A, U---U A,}

Pr{d:} + Pr{4,} +--- + Pr{4,} (by inequality (C.19))

= I’le .

c. We start by showing two facts. Firstt — 1/n < 1, which implies
(1 —=1/n)"* < 1. Secondn!/(n—k)! = n-(n—1)-(n—=2)--- (n—k +1) < nk.
Using these facts, along with the simplificatibh> (k/e)* of equation (3.18),
we have

1* n“*
O = (2) (1_2) ki(n —k)!

Al

IA

n! 3
< P ETEaY (1=1/n)"* <1)
< % (n!/(n —k)! < nk)
ek '
< o (k!> (k/e)) .

d. Notice that whem = 2, Iglgn = 0, so to be precise, we need to assume that
n > 3.
In part (c), we showed tha@, < e*/k* for anyk; in particular, this inequality
holds fork,y. Thus, it suffices to show thai‘O/kokO < 1/n3 or, equivalently,
thatn? < ko /e*o.
Taking logarithms of both sides gives an equivalent cooditi
3lgn < ko(lgko —lge)
clgn
—— (I lglgn —Iglglgn —1 .
Iglgn(gc+ glgn —Iglglgn —lge)
Dividing both sides by lg gives the condition

Cc
w(lgchlglgn—lglglgn—lge)

o1+ lgc —1Ige B lglglgn .
lglgn lglgn

11-4

Sdlected Solutions for Chapter 11: Hash Tables

Let x be the last expression in parentheses:
e=(1+ lgc —Ige B lglglgn .
lglgn lglgn
We need to show that there exists a constasnt1 such thaB < cx.

Noting that lim,_,.. x = 1, we see that there exisig such thatc > 1/2 for all
n > ng. Thus, any constant > 6 works forn > n,.

We handle smaller values af—in particular,3 < n < ny—as follows. Since
n is constrained to be an integer, there are a finite numberiofthe range
3 < n < ny. We can evaluate the expressiorior each such value of and
determine a value af for which3 < cx for all values ofn. The final value ot
that we use is the larger of

* 6, which works for alln > n,, and

* MaX<u<n, i€ : 3 < cx}, i.e., the largest value af that we chose for the
range3 < n < ny.

Thus, we have shown th&l,, < 1/n3, as desired.

To see thatP;y < 1/n? for k > k,, we observe that by part (b} < nQy
for all k. Choosingk = ko gives Py, < nQy, < n-(1/n) = 1/n*. For
k > ko, we will show that we can pick the constansuch thatQ, < 1/n3 for
all k > ko, and thus conclude thadt, < 1/»2 for all k > k.

To pickc as required, we lat be large enough thag > 3 > e. Thene/k < 1
for all k > ko, and sa* / k* decreases dsincreases. Thus,

Or < e /k*
< eko/kko
< 1/n
fork > k.

. The expectation oM is

E[M] = Zn:k-Pr{M =k}

k=0

ko n
= Y k-P{M =k}+ Y k-Pr{M =k}
k=0

k=ko+1
ko n

< > ko Pr{M =k}+ Y n-Pr{M =k}
k=0 k=ko+1

ko n
< ko) Pr{M =k}+n Y Pr{M =k}
k=0 k=ko+1
= ko-Pr{M <ko} +n-Pr{M > ko} ,
which is what we needed to show, singe= clgn/Iglgn.

To show that EM| = O(lgn/lglgn), note that PEM < ko} < 1 and

Sdlected Solutions for Chapter 11: Hash Tables 11-5

Pr{M >k = Y Pr{M=k}
k=ko+1
= Z Py
k=ko+1

n

< Y yn (by part (d))

k=ko+1
< n-(1/n?
= 1/n.
We conclude that
EM] < ko-1+n-(1/n)
= ko+1
= O(gn/lglgn).

